El sistema de numeración que utilizamos habitualmente es el decimal, que se compone de diez símbolos o dígitos (0, 1, 2, 3, 4, 5, 6, 7, 8 y 9) a los que otorga un valor dependiendo de la posición que ocupen en la cifra: unidades, decenas, centenas, millares, etc.
El valor de cada dígito está asociado al de una potencia de base 10, número que coincide con la cantidad de símbolos o dígitos del sistema decimal, y un exponente igual a la posición que ocupa el dígito menos uno, contando desde la derecha.
Decimal- Binario:
Convertir un número decimal al sistema binario es muy sencillo: basta con realizar divisiones sucesivas por 2 y escribir los restos obtenidos en cada división en orden inverso al que han sido obtenidos.
Por ejemplo, para convertir al sistema binario el número 7710 haremos una serie de divisiones que arrojarán los restos siguientes:
77: 2 = 38 Resto: 1
38: 2 = 19 Resto: 0
19: 2 = 9 Resto: 1
9: 2 = 4 Resto: 1
4: 2 = 2 Resto: 0
2: 2 = 1 Resto: 0
1: 2 = 0 Resto: 1
Y, tomando los restos en orden inverso obtenemos la cifra binaria:
Decimal-Octal:
La conversión de un número decimal a octal se hace con la misma técnica que ya hemos utilizado en la conversión a binario, mediante divisiones sucesivas por 8 y colocando los restos obtenidos en orden inverso.
Por ejemplo, para escribir en octal el número decimal 12210 tendremos que hacer las siguientes divisiones:
122: 8 = 15 Resto: 2
15: 8 = 1 Resto: 7
1: 8 = 0 Resto: 1
Tomando los restos obtenidos en orden inverso tendremos la cifra octal:
Decimal-Hexadecimal:
Primero se convierten los números dados en sistema binario y de ahí se agrupan en sub-grupos de cuatro o se divide el número dado entre dieciséis.
Por ejemplo: